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ABSTRACT

Many applications of the Fellegi-Sunter model use simplifying assumptions and ad hoc

modifications to improve matching efficacy. Because of model misspecification, distinctive

approaches developed in one application typically cannot be used in other applications and do

not always make use of advances in statistical and computational theory. An Expectation-

Maximization (EMH) algorithm that constrains the estimates to a convex subregion of the

parameter space is given. The EMH algorithm provides probability estimates that yield better

decision rules than unconstrained estimates. The algorithm is related to results of Meng and

Rubin (1993) on Multi-Cycle Expectation-Conditional Maximization algorithms and make use

of results of Haberman (1977) that hold for large classes of loglinear models.
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IMPROVED DECISION RULES IN THE FELLEGI-SUNTER

MODEL OF RECORD LINKAGE

William E. Winkler, U.S. Bureau of the Census

This paper provides a theory for obtaining constrained maximum likelihood estimates for

latent-class, loglinear models on finite state spaces. The work is related to Expectation-

Maximization (EM) algorithms by Meng and Rubin (1993) for obtaining unconstrained maximum

likelihood estimates. Meng and Rubin generalized the original ideas of Dempster, Laird, and

Rubin (1977), hereafter denoted by DLR. The new class of algorithms, denoted by EMH, apply

results of Haberman (1977) to constrain estimates to appropriate subregions of the parameter

space and assure that the likelihood of successive parameter estimates is nondecreasing. In a

variety of cases including the one of this paper, the method of constraining estimates can be

expressed in closed form. Thus, constraining estimates need not necessitate iterative fitting

methods such as Newton-Raphson or grid search.

With many applications involving latent class models, computation and modelling is greatly

simplified because observed variables are assumed to be independent conditional on unobserved

classification variables (e.g., Titterington, Makov, and Smith 1988) or such independence is

known to hold (Rubin and Stern 1993). With record linkage problems, conditional independence

does not hold (Smith and Newcombe 1975, Thibaudeau 1993). If latent class models have a

large, say ten, number of observed variables, modelling the correct set of interactions is

considerably more difficult than it is with general loglinear models where it is known to be



difficult (e.g., Bishop, Fienberg, and Holland 1975). Conventional statistics such as chi-square

do not yield accurate indications of the fit of estimates to the truth (Winkler 1989a, 1992, Rubin

and Stern 1993).

Instead of modelling the precise set of interactions, it may be suitable to include an easily

specified, say all 3-way, set of interactions and restrict the solutions to a subregion of the

parameter space based on prior knowledge. If the constraints based on a priori knowledge are

appropriate, then the resultant parameter estimates and decision rules may be nearly as good as

those obtained through detailed modelling of specific sets of interactions. The key is that the

constraints need to be easily specified, must be sufficiently weak that they provide sensible

restriction in a variety of similar situations, and that 3-way interactions and suitable parameter-

space restrictions may yield reasonable approximations to correct models that use interactions of

orders higher than 3-way.

The main example involves a record linkage problem having known matching status.

Computation is straightforward because each of the successive components of the Maximization

step are in closed form and the restriction to a subregion of the parameter space is also in closed

form using simple constraints. To motivate the concepts, basic parameter-estimation in record

linkage and the successive types of EM-type estimation procedures that have so far been applied

are described.

Fellegi and Sunter (1969) gave a formal model for record linkage that involves optimal

decision rules that divide a product space A×B of pairs of records from two files A and B into

matches and nonmatches, denoted by M and U, respectively. The main issue is the accuracy of

estimates of probability distributions used in a crucial likelihood ratio. When estimates are
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sufficiently accurate, decision rules are (nearly) optimal. The optimality is in the sense that, for

fixed bounds of the proportions of false matches and false matches, the size of the set of pairs

on which no decision is made is minimized.

Fellegi and Sunter (1969, pp. 1194-1197) considered the following probability decomposition

P(pat) = P(M) P(pat|M) + P(U) P(pat|U), (1.1)

wherepat represents an agreement pattern on characteristics such as surname, house number, and

phone. They observed that, in the case for whichpat represents the eight patterns of simple

agreement/disagreement on three fields, and the agreements are conditionally independent given

M and U, (1.1) represents seven equations and seven unknowns that can be solved directly. In

more general situations, the set of equations (1.1) can be solved by least squares, methods of

moments, or maximum likelihood. Because methods of moments do not yield solutions that are

as pleasing as those via maximum likelihood (Titterington, Smith, and Makov, 1988), and least

squares has shown numerical instability in record linkage situations (Jaro 1989), Expectation-

Maximation (EM) Algorithms (e.g., DLR) are used to get maximum likelihood estimates.

The second section of this paper contains background on EM theory and the generalizations

that are possible for loglinear models on finite state spaces. The third section describes specific

record linkage concepts more fully and the succession of EM-type algorithms that have been

applied previously. The results in the fourth section compare estimates computed via the EMH

Algorithm of this paper with estimates computed via prior methods. In the fifth section, the

limitations of current EM-type methods involving loglinear models of latent classes are described.

3



The final section consists of a summary and conclusions.

2. EM BACKGROUND AND THEORY

This section contains background needed for how EM-type procedures can be applied to

loglinear models for latent classes. While the existing EM-type procedures are known to hold

for general distributions, in the latter part of this section, only distributions from curved

exponential families on finite state spaces will be considered. The restriction on the distributions

is necessary because some of the general optimization theory applied by Wu (1973; also Meng

and Rubin 1993) is not readily applicable to the procedures described in this paper. This is

particularly true when restraints are imposed that cause some solutions to reside on the boundary

of a convex subregion of the linear manifold associated with loglinear models for latent classes.

2.1. Expectation-Maximization of Dempster, Laird, and Rubin

DLR presented the EM Algorithm as a means of obtaining maximum likelihood estimates for

incomplete data. In the context of the latent classes of this paper, the missing data are the

indicators for the classes into which the pairs in A×B are partitioned. To make the ideas more

precise, the basic ideas of DLR are summarized but details are left out. There exists two sample

spaces X and Y and a many-to-one mapping x->y(x) from X to Y. Observed data are from Y.

Unobserved x∈X are observed indirectly through Y. In the case of the contingency tables

associated with the latent classes, each observed count would represent the sum of the counts

from the unobserved counts in the contingency tables corresponding to the classes into which

A×B (in the more general notation of this section, Y) is divided.

A family of sampling densities f(x|ϕ) depending on parametersϕ in a general parameter space
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Ω is postulated. The corresponding family of sampling densities g(y|ϕ) is obtained via

g(y|ϕ) = f(x|ϕ) dx. (2.1)

X(y)

The following equations

L(ϕ) = log g(y|ϕ),

k(x|y,ϕ) = f(x|ϕ)/g(y|ϕ),

Q(ϕ′|ϕ) = E(log f(x|ϕ′)|y,ϕ), and

H(ϕ′|ϕ) = E(log k(x|y,ϕ′)|y,ϕ).

yield

L(ϕ′) - L(ϕ) = Q(ϕ′|ϕ) - Q(ϕ|ϕ) + H(ϕ|ϕ) - H(ϕ′|ϕ).

Q is the log-likelihood function with the missing x values filled in with expected values under

the distribution f(x|ϕ). Because Q is a complete data log-likelihood,ϕ′ can be chosen that

maximizes Q. For such aϕ′,

Q(ϕ′|ϕ) ≥ Q(ϕ|ϕ).

By Jensen’s inequality (e.g., DLR, p. 6),

H(ϕ|ϕ) ≥ H(ϕ′|ϕ) for all ϕ′.

Given an initial estimateϕ0, data could be completed using Q(ϕ′|ϕ0) and a new valueϕ1 that
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maximizes Q and increases L could be obtained. By iterating E and M steps, a sequenceϕp is

obtained that increases the log-likelihood L. When L is bounded overϕp, a subsequence ofϕp

can be chosen that converges to either a stationary point or a local maximum (Wu, 1983). DLR

observed that there can be different parameter formulizations f(x|ϕ) that yield that same g(y|ϕ).

Thus, the family f(x|ϕ) might be chosen that is most natural to maximizing the likelihood of

g(y|ϕ) or for simplifying computation. Also, in certain situations, such as with latent classes for

contingency tables, X might include what are traditionally called parameters. Use of equation

(2.1) will be referred to as filling in missing dataor completing the data.

2.2. Meng-Rubin ECM and MCECM

Meng and Rubin considered theϕp obtained through successive expectations and then

maximizations of the complete data expected log-likelihood Q. They observed that each

successive maximizationϕp might be replaced by a series of conditional maximizations {ϕ(p-1)

+ t/S, t = 1, ..., S} where the conditional maximizations are based on a set of restraint functions

G = {gs(ϕ), s = 1, 2,..., S}. The vectors gs are preselected. The sth conditional maximization

(CM) involves maximizing Q(ϕ|ϕp) over ϕ∈Ω subject to the constraint gs(ϕ)=gs(ϕp+(s-1)/S). That

is, for s = 1,..., S, the sth CM step in the pth iteration of the ECM findsϕt+s/S such that

Q(ϕp+s/S|ϕp) ≥ Q(ϕ|ϕp)

for all p∈Φs(ϕp+(s-1)/S) ≡

{ ϕ∈Φ : gs(ϕ) = gs(ϕp+(s-1/S))}.

Meng and Rubin provided examples showing how a set of conditional maximizations can involve

less computation than a full maximization that might require an iterative procedure such as
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Newton-Raphson. With the Meng and Rubin ECM, each individual conditional maximization

is done only once before going to the E-step. Thus, each CM-step only increases the likelihood.

Unlike the M-step in the original EM, it does not necessarily produce a maximum likelihood

estimate given the E-step data. When G is "space-filling" in the sense of allowing unconstrained

maximization overΩ in its parameter space, Meng and Rubin showed ECM converged under the

same general conditions that Wu (1983) used for the EM. They also noted that the E and

individual (or sets of) CM steps could be alternated in a multi-cycle ECM (MCECM). If G is

not "space-filling," then the maximization is over a subspace ofΩ which they specify explicitly

using a dual space characterization. For a large class of loglinear models, the same dual space

characterization has been given by Haberman (1977).

2.3. EMH Algorithm

This section contains background on how EM-type procedures can be applied to latent class

models. While the existing EM-type procedures are intended for unconstrained maximization on

the parameter spaceΩ (DLR, Wu 1983, Meng and Rubin 1993), the EMH algorithm is intended

to constrain solutions to a closed, convex subregion R ofΩ. The key idea needed for the EMH

algorithm is the following inequality due to Haberman.

Theorem. (Haberman 1975, 1977). Let the parameters being estimated via an EM-type

procedure be products of multinomial or Poisson distributions. Ifφp and φp+1 are successive

estimates, then for all, 0≤ α ≤ 1, the log-likelihood L satisfies

L(φp) ≤ L(α φp + (1-α) φp+1). (2.1)

Inequality (2.1) states that all parameters on the line segment betweenφp and φp+1 yield
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nondecreasing likelihood. Ifφp lies in the interior of a convex subregion R of the parameter

space, then it is possible to obtain anα such thatα φp + (1-α) φp+1 lies on the boundary of R.

If the constraints defining R are simple, then such anα can be represented as a closed form

solution of an equation; otherwise, such anα may have to be obtained via an iterative procedure

such as Newton-Raphson. Inequality (2.1) does not hold for general EM-type procedures. In the

following, the restraint functions {gi, i = 1, ..., S} can be assumed to be the same as those given

by Meng and Rubin (1993, also 1991, pp. 245-246). While additional restraint functions may

determine the closed, convex subregion R of the parameter spaceΩ, they are not explicitly

needed in the statement of the algorithm. Replacing the missing data with expected values is

referred to ascompletingor filling-in the data (DLR).

EMH Algorithm for loglinear models constrained to a closed, convex subregion

R of parameter spaceΩ.

1. Beginning with an initial set of parametersφ0 in R, complete data with expected

values usingφ0.

2. Using the restraints imposed by the completed data and g1, find the maximum

likelihood estimateφ1 in Ω. If φ1 ∉ R, find theα so α φ0 + (1-α) φ1 is

on the boundary of R and useα φ0 + (1-α) φ1 as the estimate. Ifφ1 ∈ R,

use it as the estimate. Complete the data according to the new estimateφ1.

3. Using the restraints imposed by the completed data and g2, find the maximum

likeliood estimateφ2 in Ω. If φ2 ∈ R, use it as the estimate. Ifφ1 is on

the boundary of R andφ2 ∉ R, useφ1 as the estimate ofφ2. If φ1 is in the
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interior of R andφ2 ∉ R, find theα so α φ1 + (1-α) φ2 is on the boundary of R

and useα φ1 + (1-α) φ2 as the estimate. Complete the data according to the new

estimateφ2.

4. Continue constrained E and M steps by successively cycling through all restraints

in the manner of Step 3.

By the theorem, the EMH algorithm yields nondecreasing likelihood. If the restraint functions

gi, i = 1, 2, ..., S, are the usual constraints associated with iterative proportional fitting, then each

conditional maximization is in closed form. If the constraints defining the subregion R are

simple, then each of theαs that pull successive estimates back to the boundary of R are also in

closed form. The initial estimateφ0 must be in R. If there is no restriction to R, then the EMH

algorithm corresponds to the MCECM algorithm of Meng and Rubin (1993). Rather than find

a maximum at each CM-step, it is sufficient to findφp+1 different fromφp so that the likelihood

increases. To assure that someφp+1 are different fromφp, computer code should monitor that the

likelihood strictly increases on some of the CM-steps.

3. RECORD LINKAGE BACKGROUND

This section contains background on the previous applications of the EM to give insight into

why the new methods were developed. The first subsection summarizes earlier EM-applications

to record linkage and the second describes the empirical data.

3.1. Previous Applications of EM

In most record linkage applications, parameter estimates associated with equation (1.1) have
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been obtained under a conditional independence assumption. When conditional independence is

assumed (Winkler 1988, Jaro 1989, Winkler 1989a,b), the EM algorithm does not yield accurate

estimates of the parameters associated with the underlying probability distributions. If such

parameters are used, then decision rules are not optimal and error rates can not be accurately

determined. To improve decision rules, independent probabilities have been adjusted based on

prior knowledge of similar files (Winkler and Thibaudeau 1991).

The main reason that existing parameter-estimation procedures fail to yield optimal decision

rules is that the conditional independence assumption is not valid. Thibaudeau (1993) observed

that, when files contain name and address information, strong dependencies between agreements

on fields such as surname, house number, street name, and phone number occur on the set on

nonmatches U. Winkler (1992) showed that, instead of A×B naturally dividing into the desired

two classes M and U, A×B can be naturally partitioned into three classes:C1- matches agreeing

on name and address,C2- nonmatches agreeing on address, andC3- nonmatches not agreeing on

address. In the decision rules, classesC2 andC3 are combined into U. The primary reason the

2-class EM procedure fails is that it divides the set of pairs into those agreeing on address and

those not. If the 3-class EM algorithm is applied under the independence assumption, reasonable

decision rules are obtained when matching decision thresholds are obtained manually (Winkler,

1992). Error rates, however, cannot be estimated accurately. An alternative error-rate estimation

procedure (Belin and Rubin 1993, Rubin and Belin 1991) can yield accurate estimated false

match rates (Winkler and Thibaudeau 1991) in some cases but is not applicable to the situations

of this paper.

Winkler (1992) applied 3-class EM algorithms under models in which all 3-way interactions
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were allowed. While the the interactions gave dramatically lower chi-square values and the

overall fits as given by the estimated cumulative probability distributions appeared acceptable,

both probability estimates for individual agreement patterns and the estimated proportion of pairs

in classC1 could differ substantially from the true values. The EM-type procedures arbitrarily

classify sets of pairs into classes according to the variables that are agreeing in the patterns and

according to interactions being fit. When a set of matching variables contains many associated

with addresses, general EM-type procedures can yield probability estimates and resultant decision

rules that give primary weight to address information and secondary weight to name and

demographic information. When all 3-way interactions are fit, spurious agreements of

nonessential variables may be given too much weight by the EM algorithm.

To better make use of prior information, specific sets of interactions can be modelled using

new algorithms first used by Armstrong (1992). The difficulty with using specific interactions

is that there are far fewer available degrees of freedom (dofs) with latent class models than with

ordinary loglinear models. For instance, with ten variables there are insufficient dofs to model

all 4-way interactions; with eight variables, insufficient for all 3-way. If use of specific sets of

interactions is not sufficient, then convex constraints can be used to predispose solutions to

convex subregions that are more likely to yield accurate estimates.

3.2. Data used in Results

The pairs are taken from two files having known matching status and 12,000 and 15,000

records, respectively. Only 116,305 pairs agreeing on a geographic identifier and the first

character of the surname are used. There are 9800 matches. The analysis evaluates nearly all

matches because less than 4 percent of the true matches disagree on the geographic identifier or
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on the first character of the surname. The matching fields that are: surname, first name, house

number, street name, phone, age, relationship to head of household, marital status, sex, and race.

To simplify computation, all comparisons are considered agree/disagree. The ten data fields yield

1024 data patterns for which frequencies are calculated. If one or both identifiers of a pair are

blank, then the comparison (blank) is considered a disagreement. This only substantially affects

age (15% blank) and phone (35% blank). Name and address data are never missing.

4. RESULTS USING EM-DERIVED PROBABILITIES

This section presents results from fitting using under five models: (1) independent, 3-class EM,

(2) dependent, 3-class EMH with all 3-way interactions of variables, (3) dependent, 3-class EMH

with a selected subset of interactions, and (4) dependent, 3-class EMH with all 3-way interactions

and selected convex constraints, and (5) dependent, 3-class EMH with a selected subset of

interactions and selected convex constraints.

When the number of interactions is increased, chi-square values will typically decrease. The

selected interaction patterns (Table 4.1) are chosen as a compromise that allows a number of

degrees of freedom so that the statistics can be tested. The first set of patterns was chosen with

knowledge of some of the true statuses. The set of patterns is described as ja because

combinatorial algorithms due to Armstrong (1992) are used in the fitting. The second set

consisting of all 3-way interactions was chosen as a general exploratory tool that left some

degrees of freedom for testing. Because the interaction patterns do not necessarily yield

estimated probabilities that give good decision rules, the convex constraints of Table 4.2 are used

to predispose estimates into subsets of the parameter space. The second set of convex constraints
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use twice the true underlying probabilities as an upper bound on the estimated probabilities.

Some of the convex constraints will lead to solutions that are on the boundary imposed by the

constraints. Others will initially constrain the solutions to certain subsets but final limiting

solutions will not hit the boundary imposed by the constraints.

Table 4.1. Interactions Used in Fitting Hierarcharical Models

ja 1. last, first, hsnm, stnm, phone, age, rel, marit
2. first, hsnm, phone, sex
3. last, race

3-way 1. all 3-way

Table 4.2. Convex Constraints Use in Fitting

ja
14 complicated restraints

3-way
P({agree last, disagree first} ∩ C1) ≤ 0.0070
P({disagree last, disagree first} ∩ C1) ≤ 0.0014

The statistics associated with the fits of the different models yield somewhat contradictory

information (Table 4.3). With the exception of the chi-squares associated with fits of the models

that include all 3-way interactions, all chi-square values are much too high. The log-likelihood

associated with fitting using the first set of interactions (denoted by ja) is closer to the theoretical

maximum of -4.1072 than the log-likelihood from all 3-way interactions. The Z-statistic is the

standard normal approximation to the chi-square statistic and is given as a reference. The reason

that the Z-values associated with the ja models are higher than those associated with 3-way

models is that many interactions are fit in those models and the Z-values are associated with

considerably fewer degrees of freedom. The P1-value associated with ClassC1 is the estimated
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proportion of pairs that are matches M. The P1-value 0.0878 associated with the first set of

interactions (denoted by ja) is the second closest to the true P1 value of 0.0869. The detailed

constraints in ja, convex were chosen to force the estimated proportion P1 close to true

proportion.

Table 4.3. Statistics Associated with Various Models

log-likelihood chi-square Z P 1

independent -4.2206 26,382.9 570.4 0.0910
ja -4.1084 294.0 8.7 0.0878
ja, convex -4.1086 340.4 11.4 0.0869
3-way -4.1088 375.0 -2.8 0.1015
3-way, convex -4.1100 660.1 5.2 0.0886

Plots of the cumulative probability distributions of the five models versus the truth (given by

the 45 degree line) are presented in Figures 1-5 for matches; in Figures 6-10 for nonmatches.

Only the regions in which the error proportions are less than 0.30 are shown. With the exception

of the independence model (Figures 1 and 6) which deviates substantially from the truth, all plots

show reasonable fits to the true distributions. While the curves associated with the chosen subset

of interactions (ja, Figures 4 and 9) appear acceptable, they mask the fact that some probability

estimates at individual points deviate substantially from the truth. The final two models that

involve convex constraints give better fits at individual points (and thus in each subrange of the

distribution) than the others.

To get a better feel for the accuracy of the distributions estimated under the different models,

it is necessary to provide plots of alternative curves. The curves are the cumulative false

classification rates against matching weight. The false match classification rate for a given

threshold weight is the ratio of the distribution of nonmatches having weight above a threshold
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to the distribution of all pairs above the same threshold. In other words, among the pairs actually

classified, it is the proportion that are in error. More precisely,

fmcr(threshold) =∑{wgt≥threshold} P(nonmatch∩ wgt) / ∑{wgt≥threshold} P(wgt).

The fmcr curves are given in Figures 11-14 and analogous false nonmatch classification curves

are given in Figures 15-18, for ja, ja-convex, 3-way, and 3-way-convex curves, respectively. The

curves show that, even though 3-way has a better chi-square fit than ja, the misclassification error

rates are much more accurately estimated by ja. While ja-convex has a lower log-likelihood and

a worse chi-square fit than ja, ja-convex provides more accurate misclassification error rates than

ja.

5. DISCUSSION

The results show that conventional chi-square statistics describing the fits give no valid

indication of the quality of the estimated probabilities when they are used in decision rules. In

decision rules, matches need to be distinguished from nonmatches. Often there is no clear

demarcation between ClassC1, matches within the same household, and ClassC2, nonmatches

within the same household. For instance, in one set of pairs, husband-wife pairs in which age

agrees and sex agrees due to miskeying are placed in ClassC1; in other sets such pairs may be

placed in ClassC2. This section describes limitations on the general applicability of convex

constraints and the extension of the EMH algorithm to general statistics.

5.1. Basic Limitations on Use of Convex Constraints

With other similar data bases having the same matching variables, representing similar types
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of geographic characteristics, and for which true matching status was known, the following

improving relative accuracies of estimated probabilities were observed

independent < all 3-way < ja selected interactions
< all 3-way + convex

where the ja selected interactions are the same as those given in Table 4.1 and the convex

constraints are the same as those given in Table 4.2. Generally, the last two models had about

the same accuracy and were much better than the first two. In one set of files in which some

of the demographic variables had substantially higher typographical variation than in other files,

the last model yielded more accurate estimated probabilities.

On an absolute basis, the estimated probabilities under the last two models were not as

accurate as those given Figures 3-5 and 8-10 but were still reasonable. The estimated cumulative

probabilities given a nonmatch were typically much more accurate than the corresponding

cumulative probabilities given a match.

No set of convex constraints or set of interactions has been found that consistently yield highly

accurate estimates. This is due to the fact that the underlying true probabilities vary significantly

from data set to data set. With ten matching variables, some true conditional probabilities

associated with individual data patterns vary by an order of magnitude. The estimates associated

with the ja selected interaction model exhibited more variation than estimates under the all 3-way,

convex model. Severe or unusual typographical variation in only 0.1 percent of the pairs

(associated with ClassesC1 andC2) were sufficient for significant changes in estimates.

5.2. EMH Algorithm for General Statistics

The idea of conditional maximization in which parameters are constrained to convex
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subregions of the parameter space can be extended from latent class models to general statistics.

The basic idea is still the one originally emphasized by Meng and Rubin. It is reducing

dimensionality to make computation associated with maximizations faster or more stable. In

general, it is possible to search for theα0 so thatα0 φp + (1-α0) φp+1 lies in the subregion R

imposed by a set of constraints and (approximately) maximizes the likelihood over allα, 0 ≤ α

≤ 1. As it is only necessary to increase the likelihood, it may often be possible to find a simple

algorithm to obtain anα0 > 0 that yields increasing likelihood. In general, such anα0 can be

found via one-dimensional Newton-Raphson or grid-search methods. The results basically

show that conventional chi-square statistics that describe the fits give no valid indication of the

quality of the estimated probabilities when they are used in decision rules. This section contains

the justification for use of convex constraints and other extensions.

6. SUMMARY AND CONCLUSIONS

This paper describes general theory and algorithms for fitting loglinear models for latent

classes. The algorithms do not require an independence assumption on the estimated conditional

probabilities associated with different latent classes, are related to ideas of Haberman (1977) and

Meng and Rubin (1993), and allow convex constraints to be imposed on the estimated

probabilities. Because conventional chi-square and other statistics describing the fits do not give

good indication of the accuracy of the estimated probabilities, the convex constraints can be used

to predispose solutions to subregions of the parameter space that are consistent with prior

knowledge.
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